Ein Jahrzehnte altes Rätsel
Rätsel um pulsierende Sterne gelöst
Die neuen Forschungsergebnisse des Teams, das von Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Polen) geleitet wird, erscheinen am 25. November 2010 in der Fachzeitschrift Nature.
© ESO/L. Calçada
|
Grzegorz Pietrzyński erläutert die neuen Resultate: “Mit dem HARPS-Instrument am 3,6 Meter Teleskop des Observatoriums der ESO auf La Silla in Chile und anderen Teleskopen gelang es uns, die Masse eines Cepheiden viel genauer als in vorangegangenen Studien zu messen. Dieses neue Ergebnis ermöglicht es uns, sofort festzustellen welche der beiden konkurrierenden Theorien zur Vorhersage der Massen von Cepheiden die richtige ist.”
Klassische veränderliche Sterne vom Typ δ Cephei, oder kurz Cepheiden, sind instabile Sterne, die größer und viel heller als die Sonne sind [1]. Sie dehnen sich regelmäßig aus und ziehen sich anschließend wieder zusammen, wobei ein solcher Kreislauf je nach Stern zwischen einigen Tagen und mehreren Monaten dauert. Die Zeit die der Cepheide braucht, um heller und anschließend wieder dunkler zu werden, ist länger bei leuchtkräftigeren und kürzer bei leuchtschwächeren Sternen. Dieser Zusammenhang ist erstaunlich genau bestimmbar. Das macht die Untersuchung von Cepheiden zu einem der besten Werkzeuge zur Vermessung der Entfernungen naher Galaxien, mit deren Hilfe sich wiederum die Entfernungsskala des gesamten Universums eichen lässt [2].
Trotz ihrer großen Bedeutung versteht man die Cepheiden noch immer nicht vollständig. Vorhersagen ihrer Massen aus der Theorie der Sternpulsationen liegen 20-30% niedriger als Vorhersagen aus der Theorie der Sternentwicklung. Dieses drängende Problem ist seit den 60er Jahren bekannt.
Um dieses Rätsel zu lösen, mussten die Astronomen einen Doppelstern finden, der einen Cepheiden enthält und auf dessen Bahnebene man von der Erde aus von der Seite sieht. Bei einem solchen so genannten Bedeckungsveränderlichen ändert sich die scheinbare Helligkeit des Sternsystems, wenn einer der beiden Komponenten auf seiner Umlaufbahn vor der anderen vorbeizieht, und nochmals wenn er hinter seinem Begleiter entlangläuft. Für so ein Doppelsternpaar können Astronomen die Massen der Sterne sehr genau bestimmen [3]. Leider treten sowohl Cepheiden als auch Bedeckungsveränderliche nicht besonders häufig auf, so dass die Chance so ein ungewöhnliches Paar zu finden recht gering zu sein schien. In der Milchstraße ist kein derartiges Sternenpaar bekannt.
Wolfgang Gieren, ein weiteres Teammitglied, greift den Faden auf: “Vor kurzem haben wir tatsächlich in der Großen Magellanschen Wolke das Doppelsternsystem gefunden auf das wir gehofft hatten. Es enthält einen Cepheiden der mit einer Periode von 3,8 Tagen pulsiert. Der Begleitstern ist etwas grösser und kühler. Beide Sterne umkreisen sich einmal alle 310 Tage. Bei der Beobachtung mit dem HARPS Spektrographen auf La Silla offenbarte sich sofort die wahre Natur des Objekts als Doppelsternsystem.”
Während die beiden Sterne auf ihren Umlaufbahnen voreinander herzogen, vermaßen die Beobachter sorgfältig die Helligkeitsschwankungen des seltenen Objekts, das die Bezeichnung OGLE-LMC-CEP0227 [4] trägt. Ebenso verwendeten sie HARPS und andere Spektrografen um die Bewegungen der Sterne auf die Erde zu und von ihr Weg zu messen – und zwar sowohl die Umlaufbewegung beider Sterne, als auch die Bewegung der Oberfläche des Cepheiden während er anschwoll und sich wieder zusammenzog.
Der vollständige und sehr detaillierte Datensatz ermöglichte den Beobachtern die Bestimmung der Bahnbewegung, der Größen und der Massen beider Sterne mit großer Genauigkeit – viel genauer als das jemals zuvor für einen Cepheiden gelungen war. Dessen Masse ist nun mit einer Unsicherheit von nur etwa 1% bekannt, und stimmt exakt mit Vorhersagen aus der Theorie der Sternpulsationen überein. Die Vorhersage einer größeren Masse aus der Theorie der Sternentwicklung stellte sich dagegen als falsch heraus.
Die stark verbesserte Bestimmung der Masse ist nur eines der Ergebnisse der Studie. Das Team hofft, weitere Exemplare dieser bemerkenswert nützlichen Sternpaare zu finden, um die beschriebene Methode noch mehrfach anwenden zu können. So glauben die Forscher mit Hilfe solcher Doppelsternsysteme schließlich die Entfernung zur Großen Magellanschen Wolke mit einer Genauigkeit von 1% bestimmen zu können. Das wiederum wäre eine äußerst wichtige Verbesserung der kosmischen Entfernungsleiter.
Notizen
[1] Die ersten Veränderlichen vom Typ der Cepheiden wurden im 18. Jahrhundert entdeckt, und die Helligkeitsschwankungen der hellsten unter ihnen können von Nacht zu Nacht bereits mit dem bloßen Auge verfolgt werden. Ihr Name leitet sich vom Stern δ Cephei im Sternbild Cepheus (ein äthiopischer König aus der griechischen Mythologie) ab, dessen Lichtwechsel von John Goodricke in England im Jahr 1784 entdeckt wurde. Bemerkenswerterweise gelang Goodricke auch die Erklärung des Lichtwechsels einer anderen Klasse von veränderlichen Sternen, nämlich der Bedeckungsveränderlichen. dabei handelt es sich um Doppelsternsysteme, bei denen die Komponenten während ihrer Bahnbewegungen jeweils vor und hinter dem Begleiter vorüberziehen, was als scheinbare Abschwächung der Gesamthelligkeit des Paares zu beobachten ist. Das sehr seltene Objekt, das in dieser Studie untersucht wurde, ist sowohl ein Cepheide als auch ein Bedeckungsveränderlicher. Klassische Cepheiden sind massereiche Sterne und unterscheiden sich von pulsierenden Veränderlichen geringerer Masse unter anderem in ihrer Entwicklungsgeschichte.
[2] Die Perioden-Leuchtkraft-Beziehung der Cepheiden wurde 1908 von Henrietta Leavitt entdeckt und von Edwin Hubble verwendet, um erste Abschätzungen der Entfernungen zu Objekten durchzuführen, von denen wir heute wissen, dass sie fremde Galaxien sind. Cepheiden wurden mit dem Hubble Space Telescope und dem VLT der ESO auf dem Paranal beobachtet um sehr genaue Entfernungen zu vielen nahen Galaxien zu messen.
[3] Insbesondere können Astronomen die Massen der beiden Sterne mit sehr hoher Genauigkeit bestimmen wenn beide Sterne ähnlich hell sind, und daher die Spektrallinien beider Partner gleichzeitig im beobachteten Spektrum sichtbar sind. Dies ist bei dem beschriebenen Objekt der Fall.
[4] Die Bezeichnung OGLE-LMC-CEP0227 verweist darauf dass die Veränderlichkeit des Objekts im Rahmen des OGLE Projektes zur Suche nach Mikro-Gravitationslinsen-Ereignissen entdeckt wurde.
Quelle: ESO
Klassische veränderliche Sterne vom Typ δ Cephei, oder kurz Cepheiden, sind instabile Sterne, die größer und viel heller als die Sonne sind [1]. Sie dehnen sich regelmäßig aus und ziehen sich anschließend wieder zusammen, wobei ein solcher Kreislauf je nach Stern zwischen einigen Tagen und mehreren Monaten dauert. Die Zeit die der Cepheide braucht, um heller und anschließend wieder dunkler zu werden, ist länger bei leuchtkräftigeren und kürzer bei leuchtschwächeren Sternen. Dieser Zusammenhang ist erstaunlich genau bestimmbar. Das macht die Untersuchung von Cepheiden zu einem der besten Werkzeuge zur Vermessung der Entfernungen naher Galaxien, mit deren Hilfe sich wiederum die Entfernungsskala des gesamten Universums eichen lässt [2].
Trotz ihrer großen Bedeutung versteht man die Cepheiden noch immer nicht vollständig. Vorhersagen ihrer Massen aus der Theorie der Sternpulsationen liegen 20-30% niedriger als Vorhersagen aus der Theorie der Sternentwicklung. Dieses drängende Problem ist seit den 60er Jahren bekannt.
Um dieses Rätsel zu lösen, mussten die Astronomen einen Doppelstern finden, der einen Cepheiden enthält und auf dessen Bahnebene man von der Erde aus von der Seite sieht. Bei einem solchen so genannten Bedeckungsveränderlichen ändert sich die scheinbare Helligkeit des Sternsystems, wenn einer der beiden Komponenten auf seiner Umlaufbahn vor der anderen vorbeizieht, und nochmals wenn er hinter seinem Begleiter entlangläuft. Für so ein Doppelsternpaar können Astronomen die Massen der Sterne sehr genau bestimmen [3]. Leider treten sowohl Cepheiden als auch Bedeckungsveränderliche nicht besonders häufig auf, so dass die Chance so ein ungewöhnliches Paar zu finden recht gering zu sein schien. In der Milchstraße ist kein derartiges Sternenpaar bekannt.
Wolfgang Gieren, ein weiteres Teammitglied, greift den Faden auf: “Vor kurzem haben wir tatsächlich in der Großen Magellanschen Wolke das Doppelsternsystem gefunden auf das wir gehofft hatten. Es enthält einen Cepheiden der mit einer Periode von 3,8 Tagen pulsiert. Der Begleitstern ist etwas grösser und kühler. Beide Sterne umkreisen sich einmal alle 310 Tage. Bei der Beobachtung mit dem HARPS Spektrographen auf La Silla offenbarte sich sofort die wahre Natur des Objekts als Doppelsternsystem.”
Während die beiden Sterne auf ihren Umlaufbahnen voreinander herzogen, vermaßen die Beobachter sorgfältig die Helligkeitsschwankungen des seltenen Objekts, das die Bezeichnung OGLE-LMC-CEP0227 [4] trägt. Ebenso verwendeten sie HARPS und andere Spektrografen um die Bewegungen der Sterne auf die Erde zu und von ihr Weg zu messen – und zwar sowohl die Umlaufbewegung beider Sterne, als auch die Bewegung der Oberfläche des Cepheiden während er anschwoll und sich wieder zusammenzog.
Der vollständige und sehr detaillierte Datensatz ermöglichte den Beobachtern die Bestimmung der Bahnbewegung, der Größen und der Massen beider Sterne mit großer Genauigkeit – viel genauer als das jemals zuvor für einen Cepheiden gelungen war. Dessen Masse ist nun mit einer Unsicherheit von nur etwa 1% bekannt, und stimmt exakt mit Vorhersagen aus der Theorie der Sternpulsationen überein. Die Vorhersage einer größeren Masse aus der Theorie der Sternentwicklung stellte sich dagegen als falsch heraus.
Die stark verbesserte Bestimmung der Masse ist nur eines der Ergebnisse der Studie. Das Team hofft, weitere Exemplare dieser bemerkenswert nützlichen Sternpaare zu finden, um die beschriebene Methode noch mehrfach anwenden zu können. So glauben die Forscher mit Hilfe solcher Doppelsternsysteme schließlich die Entfernung zur Großen Magellanschen Wolke mit einer Genauigkeit von 1% bestimmen zu können. Das wiederum wäre eine äußerst wichtige Verbesserung der kosmischen Entfernungsleiter.
Notizen
[1] Die ersten Veränderlichen vom Typ der Cepheiden wurden im 18. Jahrhundert entdeckt, und die Helligkeitsschwankungen der hellsten unter ihnen können von Nacht zu Nacht bereits mit dem bloßen Auge verfolgt werden. Ihr Name leitet sich vom Stern δ Cephei im Sternbild Cepheus (ein äthiopischer König aus der griechischen Mythologie) ab, dessen Lichtwechsel von John Goodricke in England im Jahr 1784 entdeckt wurde. Bemerkenswerterweise gelang Goodricke auch die Erklärung des Lichtwechsels einer anderen Klasse von veränderlichen Sternen, nämlich der Bedeckungsveränderlichen. dabei handelt es sich um Doppelsternsysteme, bei denen die Komponenten während ihrer Bahnbewegungen jeweils vor und hinter dem Begleiter vorüberziehen, was als scheinbare Abschwächung der Gesamthelligkeit des Paares zu beobachten ist. Das sehr seltene Objekt, das in dieser Studie untersucht wurde, ist sowohl ein Cepheide als auch ein Bedeckungsveränderlicher. Klassische Cepheiden sind massereiche Sterne und unterscheiden sich von pulsierenden Veränderlichen geringerer Masse unter anderem in ihrer Entwicklungsgeschichte.
[2] Die Perioden-Leuchtkraft-Beziehung der Cepheiden wurde 1908 von Henrietta Leavitt entdeckt und von Edwin Hubble verwendet, um erste Abschätzungen der Entfernungen zu Objekten durchzuführen, von denen wir heute wissen, dass sie fremde Galaxien sind. Cepheiden wurden mit dem Hubble Space Telescope und dem VLT der ESO auf dem Paranal beobachtet um sehr genaue Entfernungen zu vielen nahen Galaxien zu messen.
[3] Insbesondere können Astronomen die Massen der beiden Sterne mit sehr hoher Genauigkeit bestimmen wenn beide Sterne ähnlich hell sind, und daher die Spektrallinien beider Partner gleichzeitig im beobachteten Spektrum sichtbar sind. Dies ist bei dem beschriebenen Objekt der Fall.
[4] Die Bezeichnung OGLE-LMC-CEP0227 verweist darauf dass die Veränderlichkeit des Objekts im Rahmen des OGLE Projektes zur Suche nach Mikro-Gravitationslinsen-Ereignissen entdeckt wurde.
Quelle: ESO