Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

This image shows the newly discovered supercluster of galaxies detected by Planck (with the Sunyaev-Zel'dovich Effect) and XMM-Newton (in X-ray emission). This is the first supercluster to be discovered through its Sunyaev-Zel'dovich Effect.

Combined with other observations, the Sunyaev-Zel'dovich Effect allows astronomers to measure the physical properties of the hot gas (such as temperature and density) in which the galaxies are embedded.

The bright orange blob in the left panel shows the Sunyaev-Zel'dovich image of the supercluster, obtained by Planck. After Planck's detection, follow-up observations were performed with the XMM-Newton observatory in the framework of a Planck source validation programme undertaken in Director's Discretionary Time. The right panel shows the X-ray image of the supercluster obtained with XMM-Newton, which reveals the three galaxy clusters that comprise this supercluster. The X-ray contours are also superimposed on the Planck image, as a visual aid.

The Sunyaev-Zel'dovich signal from the newly discovered supercluster arises from the sum of the signal from the three individual clusters, with a possible additional contribution from an inter-cluster filamentary structure.

The angular separation between the upper cluster and the one in the bottom-right is about 7.5 arc minutes. The small, round contours scattered throughout the field are not related to the supercluster; they are point-like X-ray sources located either in the background or foreground of the supercluster, and are most likely Active Galactic Nuclei.

The X-ray emission shown in the XMM-Newton image corresponds to the energy range between 300 eV and 2000 eV, a temperature range of 3.5 million K to 23 million K, respectively.

The size of the image is about 15 arc minutes.
This image shows the newly discovered supercluster of galaxies detected by Planck (with the Sunyaev-Zel'dovich Effect) and XMM-Newton (in X-ray emission). This is the first supercluster to be discovered through its Sunyaev-Zel'dovich Effect.

Combined with other observations, the Sunyaev-Zel'dovich Effect allows astronomers to measure the physical properties of the hot gas (such as temperature and density) in which the galaxies are embedded.

The bright orange blob in the left panel shows the Sunyaev-Zel'dovich image of the supercluster, obtained by Planck. After Planck's detection, follow-up observations were performed with the XMM-Newton observatory in the framework of a Planck source validation programme undertaken in Director's Discretionary Time. The right panel shows the X-ray image of the supercluster obtained with XMM-Newton, which reveals the three galaxy clusters that comprise this supercluster. The X-ray contours are also superimposed on the Planck image, as a visual aid.

The Sunyaev-Zel'dovich signal from the newly discovered supercluster arises from the sum of the signal from the three individual clusters, with a possible additional contribution from an inter-cluster filamentary structure.

The angular separation between the upper cluster and the one in the bottom-right is about 7.5 arc minutes. The small, round contours scattered throughout the field are not related to the supercluster; they are point-like X-ray sources located either in the background or foreground of the supercluster, and are most likely Active Galactic Nuclei.

The X-ray emission shown in the XMM-Newton image corresponds to the energy range between 300 eV and 2000 eV, a temperature range of 3.5 million K to 23 million K, respectively.

The size of the image is about 15 arc minutes.
This image shows the newly discovered supercluster of galaxies detected by Planck (with the Sunyaev-Zel'dovich Effect) and XMM-Newton (in X-ray emission). This is the first supercluster to be discovered through its Sunyaev-Zel'dovich Effect.

Combined with other observations, the Sunyaev-Zel'dovich Effect allows astronomers to measure the physical properties of the hot gas (such as temperature and density) in which the galaxies are embedded.

The bright orange blob in the left panel shows the Sunyaev-Zel'dovich image of the supercluster, obtained by Planck. After Planck's detection, follow-up observations were performed with the XMM-Newton observatory in the framework of a Planck source validation programme undertaken in Director's Discretionary Time. The right panel shows the X-ray image of the supercluster obtained with XMM-Newton, which reveals the three galaxy clusters that comprise this supercluster. The X-ray contours are also superimposed on the Planck image, as a visual aid.

The Sunyaev-Zel'dovich signal from the newly discovered supercluster arises from the sum of the signal from the three individual clusters, with a possible additional contribution from an inter-cluster filamentary structure.

The angular separation between the upper cluster and the one in the bottom-right is about 7.5 arc minutes. The small, round contours scattered throughout the field are not related to the supercluster; they are point-like X-ray sources located either in the background or foreground of the supercluster, and are most likely Active Galactic Nuclei.

The X-ray emission shown in the XMM-Newton image corresponds to the energy range between 300 eV and 2000 eV, a temperature range of 3.5 million K to 23 million K, respectively.

The size of the image is about 15 arc minutes.
This image shows the newly discovered supercluster of galaxies detected by Planck (with the Sunyaev-Zel'dovich Effect) and XMM-Newton (in X-ray emission). This is the first supercluster to be discovered through its Sunyaev-Zel'dovich Effect.

Combined with other observations, the Sunyaev-Zel'dovich Effect allows astronomers to measure the physical properties of the hot gas (such as temperature and density) in which the galaxies are embedded.

The bright orange blob in the left panel shows the Sunyaev-Zel'dovich image of the supercluster, obtained by Planck. After Planck's detection, follow-up observations were performed with the XMM-Newton observatory in the framework of a Planck source validation programme undertaken in Director's Discretionary Time. The right panel shows the X-ray image of the supercluster obtained with XMM-Newton, which reveals the three galaxy clusters that comprise this supercluster. The X-ray contours are also superimposed on the Planck image, as a visual aid.

The Sunyaev-Zel'dovich signal from the newly discovered supercluster arises from the sum of the signal from the three individual clusters, with a possible additional contribution from an inter-cluster filamentary structure.

The angular separation between the upper cluster and the one in the bottom-right is about 7.5 arc minutes. The small, round contours scattered throughout the field are not related to the supercluster; they are point-like X-ray sources located either in the background or foreground of the supercluster, and are most likely Active Galactic Nuclei.

The X-ray emission shown in the XMM-Newton image corresponds to the energy range between 300 eV and 2000 eV, a temperature range of 3.5 million K to 23 million K, respectively.

The size of the image is about 15 arc minutes.

Suchen
Die neue Redshift-Generation

Solar Eclipse by Redshift

Sonnenfinsternis by Redshift für iOS

Die Sonnenfinsternis am 21. August 2017 beobachten, verstehen und bestaunen! » mehr

Solar Eclipse by Redshift

Sonnenfinsternis by Redshift für Android

Die Sonnenfinsternis am 21. August 2017 beobachten, verstehen und bestaunen! » mehr