Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Gamma-ray burst 13.1 billion light years away

"More about gamma-ray bursts"

This image merges data from Swift's Ultraviolet/Optical (blue, green) and X-Ray (orange, red) telescopes. No visible light accompanied the burst, which hints at great distance. The image is 6.3 arcminutes wide.

This image merges data from Swift's Ultraviolet/Optical (blue, green) and X-Ray (orange, red) telescopes. No visible light accompanied the burst, which hints at great distance. The image is 6.3 arcminutes wide.

Gamma-ray bursts are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a short while in the optical and in the near-infrared. This ‘afterglow’ fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness.

Gamma-ray bursts are the universe's most luminous explosions. Most occur when massive stars run out of nuclear fuel. As their cores collapse into a black hole or neutron star, gas jets - driven by processes not fully understood - punch through the star and blast into space. There, they strike gas previously shed by the star and heat it, which generates short-lived afterglows in many wavelengths.

The gamma-ray burst detected last week was easily identified to be special as explained by team member Edo Berger of Harvard University: "The lack of visible light alone suggested this could be a very distant object."

Beyond a certain distance, the expansion of the universe shifts all optical emission into longer infrared wavelengths. While a star's ultraviolet light could be similarly shifted into the visible region, ultraviolet-absorbing hydrogen gas grows thicker at earlier times. "If you look far enough away, you can't see visible light from any object," he noted.


ESO/NASA
Gamma-ray burst 13.1 billion light years away - New gamma-ray burst smashes cosmic distance record | Redshift live

Gamma-ray burst 13.1 billion light years away

"More about gamma-ray bursts"

This image merges data from Swift's Ultraviolet/Optical (blue, green) and X-Ray (orange, red) telescopes. No visible light accompanied the burst, which hints at great distance. The image is 6.3 arcminutes wide.

This image merges data from Swift's Ultraviolet/Optical (blue, green) and X-Ray (orange, red) telescopes. No visible light accompanied the burst, which hints at great distance. The image is 6.3 arcminutes wide.

Gamma-ray bursts are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a short while in the optical and in the near-infrared. This ‘afterglow’ fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness.

Gamma-ray bursts are the universe's most luminous explosions. Most occur when massive stars run out of nuclear fuel. As their cores collapse into a black hole or neutron star, gas jets - driven by processes not fully understood - punch through the star and blast into space. There, they strike gas previously shed by the star and heat it, which generates short-lived afterglows in many wavelengths.

The gamma-ray burst detected last week was easily identified to be special as explained by team member Edo Berger of Harvard University: "The lack of visible light alone suggested this could be a very distant object."

Beyond a certain distance, the expansion of the universe shifts all optical emission into longer infrared wavelengths. While a star's ultraviolet light could be similarly shifted into the visible region, ultraviolet-absorbing hydrogen gas grows thicker at earlier times. "If you look far enough away, you can't see visible light from any object," he noted.


ESO/NASA
» print article
Search
Astronomy Software

Solar Eclipse by Redshift

Solar Eclipse by Redshift for iOS

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Solar Eclipse by Redshift

Solar Eclipse by Redshift for Android

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Gamma-ray burst 13.1 billion light years away

"More about gamma-ray bursts"

This image merges data from Swift's Ultraviolet/Optical (blue, green) and X-Ray (orange, red) telescopes. No visible light accompanied the burst, which hints at great distance. The image is 6.3 arcminutes wide.

This image merges data from Swift's Ultraviolet/Optical (blue, green) and X-Ray (orange, red) telescopes. No visible light accompanied the burst, which hints at great distance. The image is 6.3 arcminutes wide.

Gamma-ray bursts are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a short while in the optical and in the near-infrared. This ‘afterglow’ fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness.

Gamma-ray bursts are the universe's most luminous explosions. Most occur when massive stars run out of nuclear fuel. As their cores collapse into a black hole or neutron star, gas jets - driven by processes not fully understood - punch through the star and blast into space. There, they strike gas previously shed by the star and heat it, which generates short-lived afterglows in many wavelengths.

The gamma-ray burst detected last week was easily identified to be special as explained by team member Edo Berger of Harvard University: "The lack of visible light alone suggested this could be a very distant object."

Beyond a certain distance, the expansion of the universe shifts all optical emission into longer infrared wavelengths. While a star's ultraviolet light could be similarly shifted into the visible region, ultraviolet-absorbing hydrogen gas grows thicker at earlier times. "If you look far enough away, you can't see visible light from any object," he noted.


ESO/NASA
» print article

Search
Astronomy Software

Solar Eclipse by Redshift

Solar Eclipse by Redshift for iOS

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Solar Eclipse by Redshift

Solar Eclipse by Redshift for Android

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more