Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

This VISTA image shows the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula. At its core is a large cluster of stars known as R 136, in which some of the most massive stars known are located. This infrared image, made with ESO’s VISTA survey telescope, is from the VISTA Magellanic Cloud Survey. The project will scan a vast area — 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon), including our nearby neighbouring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three-dimensional geometry of the Magellanic system.

This image was created from images taken through Y, J and Ks filters in the near-infrared part of the spectrum (coloured blue, green and red respectively). The exposure times were 40, 47 and 81 minutes per filter respectively. The image covers a region of sky about 52 by 70 arcminutes.
This VISTA image shows the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula. At its core is a large cluster of stars known as R 136, in which some of the most massive stars known are located. This infrared image, made with ESO’s VISTA survey telescope, is from the VISTA Magellanic Cloud Survey. The project will scan a vast area — 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon), including our nearby neighbouring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three-dimensional geometry of the Magellanic system.

This image was created from images taken through Y, J and Ks filters in the near-infrared part of the spectrum (coloured blue, green and red respectively). The exposure times were 40, 47 and 81 minutes per filter respectively. The image covers a region of sky about 52 by 70 arcminutes.
This VISTA image shows the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula. At its core is a large cluster of stars known as R 136, in which some of the most massive stars known are located. This infrared image, made with ESO’s VISTA survey telescope, is from the VISTA Magellanic Cloud Survey. The project will scan a vast area — 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon), including our nearby neighbouring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three-dimensional geometry of the Magellanic system.

This image was created from images taken through Y, J and Ks filters in the near-infrared part of the spectrum (coloured blue, green and red respectively). The exposure times were 40, 47 and 81 minutes per filter respectively. The image covers a region of sky about 52 by 70 arcminutes.
This VISTA image shows the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula. At its core is a large cluster of stars known as R 136, in which some of the most massive stars known are located. This infrared image, made with ESO’s VISTA survey telescope, is from the VISTA Magellanic Cloud Survey. The project will scan a vast area — 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon), including our nearby neighbouring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three-dimensional geometry of the Magellanic system.

This image was created from images taken through Y, J and Ks filters in the near-infrared part of the spectrum (coloured blue, green and red respectively). The exposure times were 40, 47 and 81 minutes per filter respectively. The image covers a region of sky about 52 by 70 arcminutes.

Suchen
Die neue Redshift-Generation

Solar Eclipse by Redshift

Sonnenfinsternis by Redshift für iOS

Die Sonnenfinsternis am 21. August 2017 beobachten, verstehen und bestaunen! » mehr

Solar Eclipse by Redshift

Sonnenfinsternis by Redshift für Android

Die Sonnenfinsternis am 21. August 2017 beobachten, verstehen und bestaunen! » mehr