Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Nuevo Récord de Distancia

NGC 300 X-1 en la galaxia espiral NGC 300

Esta imagen obtenida con el instrumento en el VLT FORS2 se centra en la posición del agujero negro. La imagen cubre un campo de visión de aproximadamente 2x2 minutos de arco, o alrededor de 4000 años-luz a la distancia de NGC 300. La imagen se basa en datos obtenidos a través de un filtro B de ancho y dos filtros de banda estrecha centrado en 500 nm y H-alfa.

Esta imagen obtenida con el instrumento en el VLT FORS2 se centra en la posición del agujero negro. La imagen cubre un campo de visión de aproximadamente 2x2 minutos de arco, o alrededor de 4000 años-luz a la distancia de NGC 300. La imagen se basa en datos obtenidos a través de un filtro B de ancho y dos filtros de banda estrecha centrado en 500 nm y H-alfa.

“Esta es una pareja realmente ‘intima’”, señala el colaborador Robin Barnard. “Cómo se formó un sistema tan firmemente unido, aún es un misterio”.

Sólo se había visto un sistema de este tipo previamente, pero otros sistemas que incluyeran un agujero negro y una estrella compañera no son desconocidos para los astrónomos. Basados en estos sistemas, los astrónomos ven una conexión entre la masa del agujero negro y la química galáctica. “Nos hemos dado cuenta que los agujeros negros más masivos tienden a encontrarse en galaxias más pequeñas que contienen menos elementos químicos ‘pesados’”, señala Crowther. “La galaxias más grandes que son ricas en elementos pesados, como la vía Láctea, sólo son exitosas en la producción de agujeros negros con masas más pequeñas”. Los astrónomos creen que una concentración más alta de elementos químicos pesados influye en cómo evoluciona una estrella masiva, aumentando la cantidad de materia que desprende y resultando en un agujero negro más pequeño una vez que el vestigio finalmente colapsa.

En menos de un millón de años será el turno de la estrella Wolf-Rayet de transformarse en una supernova y convertirse en agujero negro. “Si el sistema sobrevive a esta segunda explosión, los dos agujeros negros se fusionarán, emitiendo abundante energía en la forma de ondas gravitacionales a medida que se combinen,” concluye Crowther. Sin embargo, tomará unos cuantos de miles de millones de años hasta que se fusionen realmente, tiempos mucho más extensos que la escala de tiempo humana. “No obstante, nuestro estudio muestra que dichos sistemas podrían existir y que aquéllos que ya han evolucionado en agujeros negros binarios pueden ser detectados mediante investigaciones de ondas gravitacionales, tales como LIGO o Virgo.”

Fuente: ESO - European Southern Observatory
Nuevo Récord de Distancia - Buscadores de Agujeros Negros | Redshift live

Nuevo Récord de Distancia

NGC 300 X-1 en la galaxia espiral NGC 300

Esta imagen obtenida con el instrumento en el VLT FORS2 se centra en la posición del agujero negro. La imagen cubre un campo de visión de aproximadamente 2x2 minutos de arco, o alrededor de 4000 años-luz a la distancia de NGC 300. La imagen se basa en datos obtenidos a través de un filtro B de ancho y dos filtros de banda estrecha centrado en 500 nm y H-alfa.

Esta imagen obtenida con el instrumento en el VLT FORS2 se centra en la posición del agujero negro. La imagen cubre un campo de visión de aproximadamente 2x2 minutos de arco, o alrededor de 4000 años-luz a la distancia de NGC 300. La imagen se basa en datos obtenidos a través de un filtro B de ancho y dos filtros de banda estrecha centrado en 500 nm y H-alfa.

“Esta es una pareja realmente ‘intima’”, señala el colaborador Robin Barnard. “Cómo se formó un sistema tan firmemente unido, aún es un misterio”.

Sólo se había visto un sistema de este tipo previamente, pero otros sistemas que incluyeran un agujero negro y una estrella compañera no son desconocidos para los astrónomos. Basados en estos sistemas, los astrónomos ven una conexión entre la masa del agujero negro y la química galáctica. “Nos hemos dado cuenta que los agujeros negros más masivos tienden a encontrarse en galaxias más pequeñas que contienen menos elementos químicos ‘pesados’”, señala Crowther. “La galaxias más grandes que son ricas en elementos pesados, como la vía Láctea, sólo son exitosas en la producción de agujeros negros con masas más pequeñas”. Los astrónomos creen que una concentración más alta de elementos químicos pesados influye en cómo evoluciona una estrella masiva, aumentando la cantidad de materia que desprende y resultando en un agujero negro más pequeño una vez que el vestigio finalmente colapsa.

En menos de un millón de años será el turno de la estrella Wolf-Rayet de transformarse en una supernova y convertirse en agujero negro. “Si el sistema sobrevive a esta segunda explosión, los dos agujeros negros se fusionarán, emitiendo abundante energía en la forma de ondas gravitacionales a medida que se combinen,” concluye Crowther. Sin embargo, tomará unos cuantos de miles de millones de años hasta que se fusionen realmente, tiempos mucho más extensos que la escala de tiempo humana. “No obstante, nuestro estudio muestra que dichos sistemas podrían existir y que aquéllos que ya han evolucionado en agujeros negros binarios pueden ser detectados mediante investigaciones de ondas gravitacionales, tales como LIGO o Virgo.”

Fuente: ESO - European Southern Observatory
» imprimir artículo
Buscar
Astronomy Software

Solar Eclipse by Redshift

Solar Eclipse by Redshift for iOS

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » mas

Solar Eclipse by Redshift

Solar Eclipse by Redshift for Android

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » mas

Nuevo Récord de Distancia

NGC 300 X-1 en la galaxia espiral NGC 300

Esta imagen obtenida con el instrumento en el VLT FORS2 se centra en la posición del agujero negro. La imagen cubre un campo de visión de aproximadamente 2x2 minutos de arco, o alrededor de 4000 años-luz a la distancia de NGC 300. La imagen se basa en datos obtenidos a través de un filtro B de ancho y dos filtros de banda estrecha centrado en 500 nm y H-alfa.

Esta imagen obtenida con el instrumento en el VLT FORS2 se centra en la posición del agujero negro. La imagen cubre un campo de visión de aproximadamente 2x2 minutos de arco, o alrededor de 4000 años-luz a la distancia de NGC 300. La imagen se basa en datos obtenidos a través de un filtro B de ancho y dos filtros de banda estrecha centrado en 500 nm y H-alfa.

“Esta es una pareja realmente ‘intima’”, señala el colaborador Robin Barnard. “Cómo se formó un sistema tan firmemente unido, aún es un misterio”.

Sólo se había visto un sistema de este tipo previamente, pero otros sistemas que incluyeran un agujero negro y una estrella compañera no son desconocidos para los astrónomos. Basados en estos sistemas, los astrónomos ven una conexión entre la masa del agujero negro y la química galáctica. “Nos hemos dado cuenta que los agujeros negros más masivos tienden a encontrarse en galaxias más pequeñas que contienen menos elementos químicos ‘pesados’”, señala Crowther. “La galaxias más grandes que son ricas en elementos pesados, como la vía Láctea, sólo son exitosas en la producción de agujeros negros con masas más pequeñas”. Los astrónomos creen que una concentración más alta de elementos químicos pesados influye en cómo evoluciona una estrella masiva, aumentando la cantidad de materia que desprende y resultando en un agujero negro más pequeño una vez que el vestigio finalmente colapsa.

En menos de un millón de años será el turno de la estrella Wolf-Rayet de transformarse en una supernova y convertirse en agujero negro. “Si el sistema sobrevive a esta segunda explosión, los dos agujeros negros se fusionarán, emitiendo abundante energía en la forma de ondas gravitacionales a medida que se combinen,” concluye Crowther. Sin embargo, tomará unos cuantos de miles de millones de años hasta que se fusionen realmente, tiempos mucho más extensos que la escala de tiempo humana. “No obstante, nuestro estudio muestra que dichos sistemas podrían existir y que aquéllos que ya han evolucionado en agujeros negros binarios pueden ser detectados mediante investigaciones de ondas gravitacionales, tales como LIGO o Virgo.”

Fuente: ESO - European Southern Observatory
» imprimir artículo

Search
Astronomy Software

Solar Eclipse by Redshift

Solar Eclipse by Redshift for iOS

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Solar Eclipse by Redshift

Solar Eclipse by Redshift for Android

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more